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The flow past a rapidly rotating circular cylinder in 
a uniform stream 

By D. W. MOORE 
Jesus College, Cambridge 

(Received 5 A p d  1957) 

SUMMARY 
A circular cylinder is rotating in a uniform stream of viscous 

liquid, the circumferential velocity of the cylinder being much 
greater than that of the uniform stream. It is shown that the effect 
of the uniform stream can be regarded as a small perturbation of 
the rotary flow due to the cylinder, and that a uniformly valid 
first approximation to the flow field can be obtained in this way. 
This approximate solution has the interesting property that the 
circulation about any circular contour concentric with the cylinder 
is the same. The lift on the cylinder is shown to be that given 
by the classical formula, and the drag force is zero to the order of 
the approximation considered. 

1. INTRODUCTION 
In  inviscid fluid theory an important type of two-dimensional flow is 

that generated when an infinite cylinder is placed in a uniform stream, with 
its generators normal to the plane of flow. Since the space outside the 
cylinder is doubly connected the velocity potential is determined only if 

the circulation K = u. d l  is specified about some contour I' encircling 

the cylinder. The cylinder is then found to experience a force of magnitude 
KpU per unit length perpendicular to the direction of the uniform stream, 
where p is the fluid density, and U is the velocity of the uniform stream. 
This result is due to Kutta (1910). Taylor (1925) showed that this same 
formula for the force on the cylinder is valid for a viscous fluid, provided 
that K is defined by a contour which is everywhere distant from the cylinder, 
and which crosses the cylinder's wake normally. This result explained the 
experimental work of Bryant & Williams (1925), who had compared the 
measured value of the lift with the value obtained from the inviscid formula 
by inserting the measured value of K. 

T o  determine the value of K for given boundary conditions on the cylinder 
it is necessary to take the viscosity of the fluid into account. Sometimes 
this can be done without reference to the detailed viscous flow pattern. 
In the case of a slender aerofoil terminating in a cusp, for instance, the 
well-known Kutta-Joukowski condition, that K must be chosen so that the 
velocity of the potential flow is finite at the cusp, is a very plausible version 
of the requirement that steady viscous flow should be possible in the 
boundary layers near the cusp. In  general, however, it is not possible 
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to determine K without solving the Navier-Stokes equations for the flow, 
and it is with one such case that the present paper is concerned. 

The problem considered is that of a circular cylinder of radius a rotating 
with a circumferential velocity V in a‘uniform stream of velocity U. The 
viscous stresses set up by the cylinder’s rotation induce a circulation in the 
fluid, and the cylinder experiences a transverse force in accordance with the 
general theory mentioned above. The existence of this force was discovered 
by Magnus in 1852, and the phenomenon is now usually known as the 
‘ Magnus Effect ’. 

When the Reynolds number Va/v is large the viscous forces may be 
expected to be small outside the boundary layer, and therefore the well- 
known inviscid theory will apply outside the boundary layer. The flow 
pattern given by the inviscid theory depends critically on the ratio 2vUa/K.  
If this ratio exceeds 4 there are two stagnation points on the circumference 
of the cylinder. If 2nUa/K < i, on the other hand, there are no stagnation 
points on the cylinder, and there is a region of closed streamlines near the 
cylinder. In  this case, closed boundary layers of a well-behaved type 
might be expected to form if the Reynolds number of the flow were large. 
If the circulation is produced solely by the cylinder’s rotation it is plausible 
to assume that K is O(aV),  so that if U / Y  is small closed boundary layers 
may be expected to be formed. These are observed experimentally when 
U/V < Wood (1957) has considered 
this case from a boundary layer point of view, by expanding the velocity 
in the boundary layer in powers of U/V and substituting this expansion 
into the boundary layer equations. 

In  the case U/V = 0 the problem has a simple exact solution for all 
values of R, and it is reasonable to expect that when U/V < 1 a solution 
might be obtained, for all values of R, by regarding the uniform stream as 
producing a small perturbation of this exact solution. I t  is the purpose 
of the present paper to examine this approximation. Since the perturbation 
velocity becomes comparable with the velocity of the basic flow at a great 
distance from the cylinder, the perturbation method is obviously in danger 
of being invalid in this region of the flow. In $ 2  it is shown that this 
difficulty can be overcome by using two approximations, one appropriate 
to the region near the cylinder, and one appropriate to large distances from 
the cylinder. In  particular a uniformly valid first approximation to the 
velocity distribution can be found for all values of the Reynolds number, 
and a uniformly valid second approximation to the velocity distribution 
is found when the Reynolds number is greater than d48. Further 
approximations are not obtained explicitly, but their general nature can be 
inferred, and their relation to Wood’s expansion elucidated. 

The remainder of the paper is concerned mainly with the first approxima- 
tion; the nature of the flow pattern, and the forces on the cylinder, being 
considered in 3 3 and 0 4, respectively. I t  appears that, to the first order 
in U/V the circulation round every circular contour concentric with the 
cylinder is the same. Thus, to this order, either the circulation at the 

(Prandtl & Tietjens 1936, plate 7). 
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cylinder’s circumference, or round a contour very distant from the cylinder 
can be inserted in the formula for the lift. This is verified in $ 4 by a direct 
calculation of the lift. The drag force is also calculated, and is shown to be 
zero to this order in U ]  V. The results provided by a second approximation 
are also considered briefly in $ 3  and $4. In  particular, the circulation 
round a distant contour is determined, and, in the limit of infinite Reynolds 
numbers, is shown to be the same as that predicted by Wood from boundary 
layer considerations. 

2. T H E  FIRST APPROXIMATION 

Using polar coordinates ( u Y , ~ )  with the origin at the centre of the 
cylinder, and the line 0 = 0 in the direction of the uniform stream, the 
equation for the stream function Va$ is 

where, it will be remembered, R = Valv is the Reynolds number based 
on the circumferential speed of the cylinder. The boundary conditions 
to be satisfied by $ are, 

* = o ,  9 -  ar - - 1 ,  at r = 1, (2) 

(3) $ N u s i n 0  as r - +  co, 
where E = U/V is the small expansion parameter. 

rotary flow 

Here, in accordance with the ideas discussed in 3 1, an approximate solution 
of the form 

is sought. The function $1 must satisfy the boundary conditions 

When E = 0, the relevant exact solution of (1) is the irrotational purely 

$o = -1ogr. (4) 

9 = $0 + 4 1  (5 ) 

t,hl N r s i n 0  as r - f  a. (7) 
If terms in 2 are neglected, substitution of ( 5 )  in the exact flow equation (1) 
shows that $1 satisfies the equation 

R a  
v4*, - - y2 ae - (v2$l) = 0. (8) 

The general solution of (8) can be obtained by assuming that it may be 
represented by a Fourier series 

this is suggested by the fact that $1 must be a single-valued function of 0. 
Fortunately, it is found that the boundary conditions (2) and (3) can be 
satisfied by taking only the terms for n = & 1, so that convergence questions 
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do not arise. It is then easily found that 

In this solution 
1 >* (10) #l = g { e i o [  - ;(r - p-1) - Fr-l+ Fr(Z-P+i@ 

and p and 4 are real constants given by 

A description of the flow pattern represented by (10) will be given in Q 3 ; 
the remainder of the present section is concerned with the validity of the 
approximations leading to this solution. 

The exact solution of (l), (2) and (3) is, of course, unknown, so that the 
validity of (10) must be considered by indirect methods. Thus if (10) is 
substituted into ( l ) ,  the value of the terms that are neglected when (8) is 
derived can be calculated; and the magnitude of these neglected terms 
compared with the magnitude of the retained terms determines whether 
or not the approximation is consistent. It must be emphasized that this 
procedure cannot rigorously establish the validity of the approximation ; 
for if the approximation is invalid it cannot be used to calculate the neglected 
terms, and the procedure fails. However, since the approximation is 
physically plausible, it seems reasonable to accept it as valid if the procedure 
should show it to be consistent. 

The exact equation for $1 is 

p ,  - 4  = [*{d(l +R2) & 1}]1’2. (12) 

R a  a+ 1 a a4 1 a 
r2 ae a9 r ar 9*#,- -- (v2#1) = RE[--? - - (V2$,)- -$ ; 3 (v2$l)], (13) 

where the second term on the left-hand side is the retained inertia term, 
and the right-hand side consists of the previously neglected inertia terms. 
When r = O( 1) the retained inertia term is obviously dominant. At large 
values of r, however, one finds, on inserting (10) into this equation, that the 
retained inertia term is O(r”p-2) whilst the largest neglected inertia term is 
O ( E T - ~ ~ ) .  Thus the approximation breaks down when r = O ( ~ / E ) ,  and 
since the outer boundary condition (7) must be applied, the validity of the 
solution (10) requires further justification, even when r < 1 / ~ .  

Now when r = 0(1/~) the contributions to the velocity from both the 
basic rotary flow and the uniform stream are O(E), and it is reasonable to 
suppose that the exact solution has this same property. If, then, the 
equation (8) is solved subject to the exact boundary conditions on the cylinder 
and the order of magnitude conditions on the velocity when r = 0(1/~) 
one finds that the solution must be of the form C41 where C is a constant 
of order unity and $1 is given by (10). In order to proceed any further the 
nature of the flow in the region O( 1) < a < m must be examined. Now 
the rotational part of the velocity distribution corresponding to this solution 
is O(E@) when r = 0(1/~) where, from (12), p is always greater than unity 
and increases with R. Hence, with the mild assumption that the order of 
magnitude of the vorticity does not increase with Y in the outer region, the 
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flow in this region is, to a first approximation, irrotational. The problem 
in the outer region is therefore that of finding an irrotational stream function 
which satisfies the boundary conditions 

4 -psino a s p  = er+ co, (14) 

t,h - C(loge-logp+psinO+o(p)) as p + 0. (15) 
Equation (15) is the condition that the inner and outer solutions should 
match. Clearly a solution is possible only if C = 1, and the unique outer 
solution is then 

i+b = -logr+crsind. (16) 
Thus, subject to the assumed conditions on the orders of magnitude of the 
velocity and vorticity distributions, it has been established that (10) provides 
a first approximation to the velocity distribution throughout the whole flow 
field. It should be noted, however, that this solution provides an approxi- 
mation to the vorticity distribution only when r < O(l/e). 

It is clear that, in general, one cannot obtain a better approximation to 4 
without taking account of viscous effects in the outer region. A method of 
obtaining outer expansions which included the effects of viscosity was 
considered recently by Proudman & Pearson (1957), and it is reasonable 
to suppose that their technique could be applied to this case*. However, 
when p > 2, the discussion of the rotational term given above shows that 
it is O(e2) in the outer region, so that the flow in the outer region is 
irrotational to a second approximation. In this case one seeks a second 
approximation in the inner region by writing 

* = $0 + 4 + E2*2, (17) 
and neglecting terms in e3 when (17) is substituted into (1). 
that +2 must satisfy the equation 

One finds 

a* 1 a 
ar r ae 

R a  
V4$,- --(V2&,)=R 2- - (Va&)] .  (18) 

r2 ae 
The general solution of (18) can be effected by expanding t,h2 as a complex 
Fourier series. One then imposes the exact boundary conditions 

a t r =  1, (19) 

and the order of magnitude requirement that the vorticity corresponding 
to this solution should be O(e3) when r = 0(1/e). These conditions show 
that the most general form & can have is 

42 = -f( 1)log r - f (  I) + f ( r )  +&?{&“‘[[ar2 + pr-2 + yrd +g(r)]} .  (20) 
In  (20), f ( r )  and g(r)  are known functions arising from the inhomogeneous 

* Filon (1928) considered some general properties of the flow at great distances 
for a cylinder when circulation is present, but did not consider the possibility 
of matching his solutions to an inner expansion. 
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part of (18), and cc, p, A, and y are unknown constants satisfying the equations 

a + F + y + g ( l )  = 0 , )  

2c( - 2s + 6A +g'( 1) = 0. J 
} 

The constant 6 is the value of 2+(4+2iR)lI2 whose real part is negative. 
The most general form that the expansion in the irrotational outer region 
can assume is 

y5 = log E + ( -log p + p  sin 8) + Ed[A(log E -log p) + Beie/p -!- CeZiu/p2 + ...I f 
(22) 

If one puts r = P / E  in (20) and imposes the condition that the expansions (17) 
and (22) should match when p + 0, one finds that 

+ e2-9[A'(log E - logp) + B'eio/p + C'eZi0/p2 -t- ...I. 

(23) 

h = 0, 
A = B = C =  ...= 0, 

I 
A' =f'(l), B' = C' = ... = 0.1 

Thus t,!~~ is uniquely determined, and the outer expansion is now 

t,h = log E + ( - log p + p sin 0) -t- ~ 2 f ' (  l)(log E - log p). (24) 
The calculation of the functions f ( r )  and g ( ~ )  is straightforward, but rather 
lengthy, and details will not be given. 

The solution just obtained is valid only when p >. 2, or from (12), 
R > 2148. The determination of the second approximation would, as 
has been remarked, require the consideration of a viscous outer expansion 
if this condition were not satisfied, but in view of the greater practical interest 
in higher Reynolds numbers this is not attempted. 

As R is still further increased the vorticity in the outer region decreases 
in order of magnitude, and one can find progressively more terms of an 
inner expansion in powers of E .  Eventually in the limit of infinite Reynolds 
number, one would arrive at the situation considered by Wood (1957) in 
which one expands the velocity in powers of E and determines the coefficients 
by substitution in the boundary layer equations. It is not clear that in the 
case of finite Reynolds numbers the inner expansion will be a power series 
in E ,  as it may well contain terms of the type cn(logE)m. 

3. THE NATURE OF THE FLOW PATTERN 

The flow field surrounding the rotating cylinder presents some interesting 
features, and it will be discussed in this section on the basis of the approxima- 
tions obtained in 5 2. 

The first step in elucidating the flow pattern is to calculate the circulation 
about a circular contour of radius r ,  concentric with the cylinder. This is 
given by the formula 
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and on inserting the expressions given in $ 2  for the functions +,, and 
one finds that makes no contribution to the integral, so that 

K(r)  = 2rrvu. (26) 
Thus the circulation about all circular contours concentric with the cylinder 
is the same, and is equal to the circulation at the circumference of the 
cylinder. By Stokes's theorem, this implies that the net amount of vorticity 
contained between any two such circles is zero. I t  is interesting to recall 
that Taylor (1925) made the hypothesis that the net amount of vorticity 
in the wake contained between lines perpendicular to the wake was zero. 

If p > 2, the second approximation derived in Q 2 can be used to calculate 
the circulation. It is found that in the inner region 

K(r)  = 2rrVu[l +e"f'( l ) -rf ' (r)]  (27) 

K(r)  = 2rrVu[l +€"f ' ( l ) ] .  (28) 

and that in the outer region 

The functionf(r) is given by 

(29) 
where 0 = 2 - p  + iq, and the overbar denotes the complex conjugate. Thus 
the circulation at very large distances is constant, and is given by 

1 e2q(3P - 5) 
Z(p"l)(p2-3p+4) 

K = 2 r r V a  1 +  

It may be shown from (12) that 

and so one finds that 
p ,  -4 - (+R)li2 as R --f 00, ( 3 1 )  

K --f 2nVu(l-  3 4  as R -+ co. (32) 
The result (32) was obtained by Wood (1957) from boundary layer 
considerations. 

A first approximation to the distribution of the vorticity 5 can be 
calculated from (10) : 

The result assumes a simpler form when R is large compared with unity. 
It is then found that 

< =  - ~ V u - l 9 ( r - ~ + i ~ e ~ ~ F [ ( Z  - p  +iq)z- 11) .  

< - UU-'R~/~~-J(*~)COS( &- + 6 - (+R)l/' log r). 

( 3 3 )  

(34) 
This expression shows that the vorticity suffers a rapid oscillatory decay as 
the wall of the cylinder is left, and that it is effectively confined to a boundary 
layer of thickness O(aR-1/2). Wood (1957) has shown that this oscillatory 
character is an inherent property of closed boundary layers. 

A closer examination of (10) throws further light on the nature of the 
flow pattern. The first term is simply the potential flow around the cylinder 
induced by the uniform stream. The second and third terms arise from the 
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viscosity of the fluid. At large Reynolds numbers, the third term decays 
rapidly as r increases, and corresponds to  a thin, closed, boundary layer 
attached to the cylinder. The second term, on the other hand, decays only 
as fast as r-l, and corresponds to an irrotational secondary flow induced by 
the normal velocities at the outer edge of the boundary layer. The character 
of this secondary flow is made clear by writing down the stream function 
from which it can be derived. When R is large compared with unity this 
stream function is 

$’ N Uur-1R-l~2cos(O -I- $57) .  ( 3 5 )  
This secondary flow, like all such flows, is irrotational, and decreases in 
magnitude as R+ 03. The inflow into the boundary layer is shown 
diagrammatically in figure 1. 

1 FLUID ENTERS 

Figure 1. T h e  distribution of inflow velocity into the boundary layer. 

The mechanism producing the secondary flow is of the same general 
type as is found in other rotary flows. The viscous forces modify the velocity 
of a given fluid particle, so that the centrifugal force due to the curvature 
of the streamlines no longer balances the normal pressure gradient. There 
seems to be no obvious physical reason for the angular distribution of the 
flow, particularly the symmetry about the line 0 = &T. 

It appears, then, that at large Reynolds numbers the flow pattern outside 
the boundary layer is very nearly that predicted by the inviscid theory. 
More precisely, at any point outside the boundary layer, 

(viscous stream function) = (inviscid stream function) + O(R-lI2). (36) 

In particular, there is no wake; a fact which will be found to have 
important consequences for the drag force experienced by the cylinder. 
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The formation of a boundary layer as R -+ a, with the corresponding 
occurrence of large velocity gradients, may make some of the terms neglected 
in the derivation of (8) of comparable order to those retained. Inspection 
of the exact equation (13) for #1 reveals that the terms retained are O(#.5/S4) 
whilst the largest neglected terms are O(#2~2R/S3), where 6 is the dimension- 
less boundary layer thickness. In the boundary layer '#  = O(R-1/2) and 
S = 0(R-lj2), so that the retained terms are O(eR3I2) and the largest neglected 
terms are O(e2R3I2). Thus the neglected terms are still smaller than those 
retained by a factor E ,  and the validity of the approximation is unaffected by 
the presence of a boundary layer. 

4. THE FORCES EXPERIENCED BY THE CYLINDER 

The solution obtained in $ 2  can be used to calculate the forces exerted 

It may be shown that on the surface of the cylinder 
on the cylinder by the fluid. 

and P, = - P ( l , @ ,  
where p(  1,e) satisfies the equation 

If the solution #,, + found in $ 2 is used to calculate these stresses, 
the force (X, Y )  acting on the cylinder can be determined by integration, 
and one finds that 

x = 0, (40) 
Y =  -2naVpU. (41) 

Thus the drag force is zero to the order of the approximation considered. 
This is perhaps a surprising result, but it follows from the character of the 
flow at large distances from the cylinder. There is no wake in this flow, 
since the boundary layers are closed, and consequently the flow at great 
distances is (to this order) everywhere irrotational. It follows from 
momentum considerations (Taylor 1925) that the drag force is zero. 

The result (41) for the lifting force is also in agreement with Taylor's 
conclusions (discussed in 5 l), since, as was shown in 5 3, the circulation is 
2naV to the first order. 

The above results have been derived from the first approximation 
#* + E # ~  which, as was shown in 9 2, provides a valid approximation to the 
flow pattern for R > 0. If attention is restricted to the case p > 2, the 
second approximation to the flow field can be inserted in the above 
expressions for the stresses, and the total force on the cylinder recalcuated. 
One finds that the second approximation makes no contribution to either X 
or Y,  so that 

A- = 0(€3), (42) 
Y = - 2ra Vp U{ 1 + O(e2)}.  (43) 
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The result (42) is not surprising in view of the argument given above, and 
(43) is in agreement with the value obtained when the circulation at large 
distances calculated in $ 3  is inserted in Taylor’s formula for the lift. 
Unfortunately the measurements that have been made of the forces 
experienced by a rotating circular cylinder (Goldstein 1938, pp. 545-548) 
have been made at high Reynolds numbers where the stability of the flow 
is in doubt, so that no comparison of the above theory with experiment 
seems to be possible. 

The viscous dissipation in the boundary layer absorbs the work which 
must be done against the torque to maintain the cylinder’s rotation. The 
torque G can be calculated from (37), and, using the second approximation 
one finds that 

For large values of R, p may be replaced by its asymptotic expression, and 

G N - 4 ~ p a V (  1 + +112~~Rl/~). (45) 

The author is indebted to Dr I. Proudman for his encouragement and 
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